2022 年下半年,ChatGPT 爆火的同时,硅谷著名风险资本 a16z 走访了数十家 AI 创业公司和大科技公司。他们发现,创业公司转手就把 80%-90% 的早期融资款送给了云计算平台,以训练自己的模型。他们估算,即便这些公司的产品成熟了,每年也得把 10%-20% 的营收送给云计算公司。相当于一笔 “AI 税”。
这带来了在云上提供模型能力和训练服务,把算力租给其它客户和创业公司的大市场。仅在国内,现在就至少有数十家创业公司和中小公司在自制复杂大语言模型,他们都得从云计算平台租 GPU。据 a16z 测算,一个公司一年的 AI 运算开支只有超过 5000 万美元,才有足够的规模效应支撑自己批量采购 GPU。
据《晚点 LatePost》了解,今年春节后,拥有云计算业务的中国各互联网大公司都向英伟达下了大单。字节今年向英伟达订购了超过 10 亿美元的 GPU,另一家大公司的订单也至少超过 10 亿元人民币。
仅字节一家公司今年的订单,可能已接近英伟达去年在中国销售的商用 GPU 总和。去年 9 月,美国政府发布对 A100、H100(英伟达最新两代数据中心商用 GPU) 的出口管制时,英伟达曾回应称这可能影响去年四季度它在中国市场的 4 亿美元(约合 28 亿元人民币)潜在销售。以此推算,2022 年全年英伟达数据中心 GPU 在中国的销售额约为 100 亿元人民币。
相比海外巨头,中国大科技公司采购 GPU 更为急迫。过去两年的降本增效中,一些云计算平台减少了 GPU 采购,储备不足。此外,谁也不敢保证,今天能买的高性能 GPU,明天会不会就受到新的限制。
从砍单到加购,同时内部腾挪
今年初之前,中国大型科技公司对 GPU 的需求还不温不火。
GPU 在中国大型互联网科技公司中主要有两个用途:一是对内支持业务和做一些前沿 AI 研究,二是把 GPU 放到云计算平台上对外售卖。
一名字节人士告诉《晚点 LatePost》,2020 年 6 月 OpenAI 发布 GPT-3 后,字节就曾训练了一个数十亿参数的生成式语言大模型,当时主要使用的 GPU 是 A100 前代产品 V100。由于参数规模有限,这个模型生成能力一般,字节当时看不到它的商业化可能性,“ROI(投资回报率) 算不过来”,这次尝试不了了之。
阿里也曾在 2018-2019 年积极采购 GPU。一位阿里云人士称,当时阿里的采购量至少达到上万块规模,购买的型号主要是 V100 和英伟达更早前发布的 T4。不过这批 GPU 中只有约十分之一给到了达摩院用作 AI 技术研发。2021 年发布万亿参数大模型 M6 后,达摩院曾披露训练 M6 使用了 480 块 V100。
阿里当时购买的 GPU,更多给到了阿里云用于对外租赁。但包括阿里云在内,一批中国云计算公司都高估了中国市场的 AI 需求。一位科技投资人称,大模型热潮之前,国内主要云厂商上的 GPU 算力不是紧缺,而是愁卖,云厂商甚至得降价卖资源。去年阿里云先后降价 6 次,GPU 租用价下降超两成。
在降本增效,追求 “有质量的增长” 与利润的背景下,据了解,阿里在 2020 年之后收缩了 GPU 采购规模,腾讯也在去年底砍单一批英伟达 GPU。
然而,没过多久后的 2022 年初,ChatGPT 改变了所有人的看法,共识很快达成:大模型是不容错过的大机会。
各公司创始人亲自关注大模型进展:字节跳动创始人张一鸣开始看人工智能论文;阿里巴巴董事局主席张勇接手阿里云,在云峰会上发布大模型进展时称,“所有行业、应用、软件、服务,都值得基于大模型能力重做一遍”。
一名字节人士称,过去在字节内部申请采购 GPU 时,要说明投入产出比、业务优先级和重要性。而现在大模型业务是公司战略级别新业务,暂时算不清 ROI 也必须投入。
研发自己的通用大模型只是第一步,各公司的更大目标是推出提供大模型能力的云服务,这是真正可以匹配投入的大市场。
微软的云服务 Azure 在中国云计算市场本没有太强存在感,入华十年来主要服务跨国公司的中国业务。但现在客户得排队等待,因为它是 OpenAI 商业化的唯一云代理商。
阿里在 4 月的云峰会上,再次强调 MaaS(模型即服务)是未来云计算趋势,在开放自研的通用基础模型 “通义千问” 测试之外,还发布了一系列帮助客户在云上训练、使用大模型的工具。不久后腾讯和字节火山引擎也先后发布自己的新版训练集群服务。腾讯称用新一代集群训练万亿参数的混元大模型,时间可被压缩到 4 天;字节称它们的新集群支持万卡级大模型训练,国内数十家做大模型的企业,多数已在使用火山引擎。
所有这些平台使用的要么是英伟达 A100、H100 GPU,要么是去年禁令后英伟达专门推出的减配版 A800、H800,这两款处理器带宽分别是原版的约 3/4 和约一半,避开了高性能 GPU 的管制标准。
围绕 H800 和 A800,中国科技大公司开始了新一轮下单竞争。
一名云厂商人士称,字节、阿里等大公司主要是和英伟达原厂直接谈采购,代理商和二手市场难以满足他们的庞大需求。
英伟达会按目录价,根据采购规模谈一个折扣。据英伟达官网,A100 售价为 1 万美元 / 枚(约 7.1 万元人民币),H100 售价为 3.6 万美元 / 枚(约 25.7 万元人民币);据了解,A800 和 H800 售价略低于原版。
中国公司能否抢到卡,更多是看商业关系,比如以往是不是英伟达的大客户。“你是和中国英伟达谈,还是去美国找老黄(黄仁勋,英伟达创始人、CEO)直接谈,都有差别。” 一位云厂商人士说。
部分公司也会和英伟达进行 “业务合作”,在购买抢手的数据中心 GPU 时,也购买其它产品,以争取优先供应。这就像爱马仕的配货,如果你想买到热门的包,往往也得搭配几万元的衣服、鞋履。
综合我们获得的行业信息,字节今年的新下单动作相对激进,超过 10 亿美元级别。
一位接近英伟达的人士称,字节到货和没到货的 A100 与 H800 总计有 10 万块。其中 H800 今年 3 月才开始投产,这部分芯片应来自今年的加购。据了解,以现在的排产进度,部分 H800 要到今年底才能交货。
字节跳动 2017 年开始建设自己的数据中心。曾经的数据中心更依赖适应所有计算的 CPU,直到 2020 年,字节采购英特尔 CPU 的金额还高于英伟达 GPU。字节采购量的变化,也反映了如今大型科技公司的计算需求中,智能计算对通用计算的赶超。
据了解,某互联网大厂今年至少已给英伟达下了万卡级别订单,按目录价估算价值超 10 亿元人民币。
腾讯则率先宣布已用上 H800,腾讯云在今年 3 月发布的新版高性能计算服务中已使用了 H800,并称这是国内首发。目前这一服务已对企业客户开放测试申请,这快于大部分中国公司的进度。
据了解,阿里云也在今年 5 月对内提出把 “智算战役” 作为今年的头号战役,并设立三大目标:机器规模、客户规模和营收规模;其中机器规模的重要指标就是 GPU 数量。
新的 GPU 到货前,各公司也在通过内部腾挪,优先支持大模型研发。
能一次释放较多资源的做法是砍掉一些没那么重要,或短期看不到明确前景的方向。“大公司有好多半死不活的业务占着资源。” 一位互联网大公司 AI 从业者说。
今年 5 月,阿里达摩院裁撤自动驾驶实验室:300 多名员工中,约 1/3 划归菜鸟技术团队,其余被裁,达摩院不再保留自动驾驶业务。研发自动驾驶也需要用高性能 GPU 做训练。这一调整可能与大模型无直接关系,但确实让阿里获得了一批 “自由 GPU”。
字节和美团,则直接从给公司带来广告收入的商业化技术团队那里匀 GPU。
据《晚点 LatePost》了解,今年春节后不久,字节把一批原计划新增给字节商业化技术团队的 A100 匀给了 TikTok 产品技术负责人朱文佳。朱文佳正在领导字节大模型研发。而商业化技术团队是支持抖音广告推荐算法的核心业务部门。
美团在今年一季度左右开始开发大模型。据了解,美团不久前从多个部门调走了一批 80G 显存顶配版 A100,优先供给大模型,让这些部门改用配置更低的 GPU。
财力远不如大平台充裕的 B 站对大模型也有规划。据了解,B 站此前已储备了数百块 GPU。今年,B 站一方面持续加购 GPU,一方面也在协调各部门匀卡给大模型。“有的部门给 10 张,有的部门给 20 张。” 一位接近 B 站的人士称。
字节、美团、B 站等互联网公司,原本支持搜索、推荐的技术部门一般会有一些 GPU 资源冗余,在不伤害原有业务的前提下,他们现在都在 “把算力水分挤出来”。
不过这种拆东补西的做法能获得的 GPU 数量有限,训练大模型所需的大头 GPU 还是得靠各公司过去的积累和等待新 GPU 到货。
全世界都在抢算力
对英伟达数据中心 GPU 的竞赛也发生在全球范围。不过海外巨头大量购买 GPU 更早,采购量更大,近年的投资相对连续。
2022 年,Meta 和甲骨文就已有对 A100 的大投入。Meta 在去年 1 月与英伟达合作建成 RSC 超级计算集群,它包含 1.6 万块 A100。同年 11 月,甲骨文宣布购买数万块 A100 和 H100 搭建新计算中心。现在该计算中心已部署了超 3.27 万块 A100,并陆续上线新的 H100。
微软自从 2019 年第一次投资 OpenAI 以来,已为 OpenAI 提供数万块 GPU。今年 3 月,微软又宣布已帮助 OpenAI 建设了一个新计算中心,其中包括数万块 A100。Google 在今年 5 月推出了一个拥有 2.6 万块 H100 的计算集群 Compute Engine A3,服务想自己训练大模型的公司。
中国大公司现在的动作和心态都比海外巨头更急迫。以百度为例,它今年向英伟达新下的 GPU 订单高达上万块。数量级与 Google 等公司相当,虽然百度的体量小得多,其去年营收为 1236 亿元人民币,只有 Google 的 6%。
据了解,字节、腾讯、阿里、百度这四家中国投入 AI 和云计算最多的科技公司,过去 A100 的积累都达到上万块。其中字节的 A100 绝对数最多。不算今年的新增订单,字节 A100 和前代产品 V100 总数接近 10 万块。
成长期公司中,商汤今年也宣称,其 “AI 大装置” 计算集群中已总共部署了 2.7 万块 GPU,其中有 1 万块 A100。连看似和 AI 不搭边的量化投资公司幻方之前也购买了 1 万块 A100。
仅看总数,这些 GPU 供各公司训练大模型似乎绰绰有余——据英伟达官网案例,OpenAI 训练 1750 亿参数的 GPT-3 时用了 1 万块 V100 ,训练时长未公开;英伟达测算,如果用 A100 来训练 GPT-3 ,需要 1024 块 A100 训练 1 个月,A100 相比 V100 有 4.3 倍性能提升。但中国大公司过去采购的大量 GPU 要支撑现有业务,或放在云计算平台上售卖,并不能自由地用于大模型开发和对外支持客户的大模型需求。
这也解释了中国 AI 从业者对算力资源估算的巨大差别。清华智能产业研究院院长张亚勤 4 月底参加清华论坛时说,“如果把中国的算力加一块,相当于 50 万块 A100,训练五个模型没问题。”AI 公司旷视科技 CEO 印奇接受《财新》采访时则说:中国目前可用作大模型训练的 A100 总共只有约 4 万块。
主要反映对芯片、服务器和数据中心等固定资产投资的资本开支,可以直观说明中外大公司计算资源的数量级差距。
最早开始测试类 ChatGPT 产品的百度,2020 年以来的年资本开支在 8 亿到 20 亿美元之间,阿里在 60-80 亿美元之间,腾讯在 70-110 亿美元之间。同期,亚马逊、Meta、Google、微软这四家自建数据中心的美国科技公司的年资本开支最少均超过 150 亿美元。
疫情三年中,海外公司资本开支继续上涨。亚马逊去年的资本开支已来到 580 亿美元,Meta、Google 均为 314 亿美元,微软接近 240 亿美元。中国公司的投资在 2021 年之后则在收缩。腾讯、百度去年的资本开支均同比下滑超 25%。
训练大模型的 GPU 已不算充足,各家中国公司如果真的要长期投入大模型,并赚到给其它模型需求 “卖铲子” 的钱,未来还需要持续增加 GPU 资源。
走得更快的 OpenAI 已遇到了这一挑战。5 月中旬,OpenAI CEO SamAltman 在与一群开发者的小范围交流中说,由于 GPU 不够,OpenAI 现在的 API 服务不够稳定,速度也不够快,在有更多 GPU 前,GPT-4 的多模态能力还无法拓展给每个用户,他们近期也不准备发布新的消费级产品。技术咨询机构 TrendForce 今年 6 月发布报告称,OpenAI 需要约 3 万块 A100 来持续优化和商业化 ChatGPT。
与 OpenAI 合作颇深的微软也面临类似情境:今年 5 月,有用户吐槽 New Bing 回答速度变慢,微软回应,这是因为 GPU 补充速度跟不上用户增长速度。嵌入了大模型能力的微软 Office 365 Copilot 目前也没有大规模开放,最新数字是有 600 多家企业在试用——Office 365 的全球总用户数接近 3 亿。
中国大公司如果不是仅把训练并发布一个大模型作为目标,而是真想用大模型创造服务更多用户的产品,并进一步支持其它客户在云上训练更多大模型,就需要提前储备更多 GPU。
为什么只能是那四款卡?
在 AI 大模型训练上,现在 A100、H100 及其特供中国的减配版 A800、H800 找不到替代品。据量化对冲基金 Khaveen Investments 测算,英伟达数据中心 GPU 2022 年市占率达 88%,AMD 和英特尔瓜分剩下的部分。
英伟达 GPU 目前的不可替代性,源自大模型的训练机制,其核心步骤是预训练(pre-training)和微调(fine-tuning),前者是打基座,相当于接受通识教育至大学毕业;后者则是针对具体场景和任务做优化,以提升工作表现。
预训练环节尤其消耗算力,它对单个 GPU 的性能和多卡间的数据传输能力有极高要求。
现在只有 A100、H100 能提供预训练所需的计算效率,它们看起来昂贵,反倒是最低廉的选择。今天 AI 还在商用早期,成本直接影响一个服务是否可用。
过去的一些模型,如能识别猫是猫的 VGG16,参数量只有 1.3 亿,当时一些公司会用玩游戏的 RTX 系列消费级显卡来跑 AI 模型。而两年多前发布的 GPT-3 的参数规模已达到 1750 亿。
大模型的庞大计算需求下,用更多低性能 GPU 共同组成算力已行不通了。因为使用多个 GPU 训练时,需要在芯片与芯片间传输数据、同步参数信息,这时部分 GPU 会闲置,无法一直饱和工作。所以单卡性能越低,使用的卡越多,算力损耗就越大。OpenAI 用 1 万块 V100 训练 GPT-3 时的算力利用率不到 50%。
A100 、H100 则既有单卡高算力,又有提升卡间数据传输的高带宽。A100 的 FP32(指用 4 字节进行编码存储的计算)算力达到 19.5 TFLOPS(1 TFLOPS 即每秒进行一万亿次浮点运算),H100 的 FP32 算力更高达 134 TFLOPS,是竞品 AMD MI250 的约 4 倍。
A100、H100 还提供高效数据传输能力,尽可能减少算力闲置。英伟达的独家秘籍是自 2014 年起陆续推出的 NVLink、NVSwitch 等通信协议技术。用在 H100 上的第四代 NVLink 可将同一服务器内的 GPU 双向通信带宽提升至 900 GB/s(每秒传输 900GB 数据),是最新一代 PCle(一种点对点高速串行传输标准)的 7 倍多。
去年美国商务部对 GPU 的出口规定,也正是卡在算力和带宽这两条线上:算力上线为 4800 TOPS,带宽上线为 600 GB/s。
A800 和 H800 算力和原版相当,但带宽打折。A800 的带宽从 A100 的 600GB/s 降为 400GB/s,H800 的具体参数尚未公开,据彭博社报道,它的带宽只有 H100(900 GB/s) 的约一半,执行同样的 AI 任务时,H800 会比 H100 多花 10%-30% 的时间。一名 AI 工程师推测,H800 的训练效果可能还不如 A100,但更贵。
即使如此,A800 和 H800 的性能依然超过其他大公司和创业公司的同类产品。受限于性能和更专用的架构,各公司推出的 AI 芯片或 GPU 芯片,现在主要用来做 AI 推理,难以胜任大模型预训练。简单来说,AI 训练是做出模型,AI 推理是使用模型,训练对芯片性能要求更高。
性能差距外,英伟达更深的护城河是软件生态。
早在 2006 年,英伟达就推出计算平台 CUDA,它是一个并行计算软件引擎,开发者可使用 CUDA 更高效地进行 AI 训练和推理,用好 GPU 算力。CUDA 今天已成为 AI 基础设施,主流的 AI 框架、库、工具都以 CUDA 为基础进行开发。
英伟达之外的 GPU 和 AI 芯片如要接入 CUDA,需要自己提供适配软件,但只有 CUDA 部分性能,更新迭代也更慢。PyTorch 等 AI 框架正试图打破 CUDA 的软件生态垄断,提供更多软件能力以支持其它厂商的 GPU,但这对开发者吸引力有限。
一位 AI 从业者称,他所在的公司曾接触一家非英伟达 GPU 厂商,对方的芯片和服务报价比英伟达更低,也承诺提供更及时的服务,但他们判断,使用其它 GPU 的整体训练和开发成本会高于英伟达,还得承担结果的不确定性和花更多时间。
“虽然 A100 价格贵,但其实用起来是最便宜的。” 他说。对有意抓住大模型机会的大型科技公司和头部创业公司来说,钱往往不是问题,时间才是更宝贵的资源。
短期内,唯一影响英伟达数据中心 GPU 销量的可能只有台积电的产能。
H100/800 为 4 nm 制程,A100/800 为 7 nm 制程,这四款芯片均由台积电代工生产。据中国台湾媒体报道,英伟达今年向台积电新增了 1 万片数据中心 GPU 订单,并下了超急件 ,生产时间最多可缩短 50%。正常情况下,台积电生产 A100 需要数月。目前的生产瓶颈主要在先进封装产能不够,缺口达一至两成,需要 3-6 个月逐步提升。
自从适用于并行计算的 GPU 被引入深度学习,十多年来,AI 发展的动力就是硬件与软件,GPU 算力与模型和算法的交叠向前:模型发展拉动算力需求;算力增长,又使原本难以企及的更大规模训练成为可能。
在上一波以图像识别为代表的深度学习热潮中,中国 AI 软件能力比肩全球最前沿水平;算力是目前的难点——设计与制造芯片需要更长的积累,涉及漫长的供应链和繁杂的专利壁垒。
大模型是模型与算法层的又一次大进展,没时间慢慢来了,想做大模型,或提供大模型云计算能力的公司必须尽快获得足够多的先进算力。在这轮热潮使第一批公司振奋或失望前,围绕 GPU 的抢夺不会停止。